9,534 research outputs found

    Capacity and Energy Usage of Translucent and Multi-Band Transparent Optical Networks

    Get PDF
    This work shows that exploiting more bands in a transparent network design is a more effective and power-efficient way to increase the network capacity instead of relying on signal regenerators to increase spectral efficiency

    Weighing-in-motion wireless system for sustainable railway transport

    Get PDF
    Railway transport is well known as one of the safest and most energy-efficient transport modes, thus favoring its strengthening as part of a sustainable transport system. Yet, the track service life and the quality of the ride on a railway are dependent upon different factors, which can be assessed by a diverse set of technology based systems. In this context, this paper presents the EVO4Rail project that seeks to design, develop and implement a wireless monitoring system for weighing-in-motion and detecting faulty wheels in railway vehicles, positively impacting railway operation, maintenance and management, ultimately aiming at a sustainable rail transport.info:eu-repo/semantics/publishedVersio

    Impact of mesenchymal stem cells' secretome on glioblastoma pathophysiology

    Get PDF
    Background: Glioblastoma (GBM) is a highly aggressive primary brain cancer, for which curative therapies are not available. An emerging therapeutic approach suggested to have potential to target malignant gliomas has been based on the use of multipotent mesenchymal stem cells (MSCs), either unmodified or engineered to deliver anticancer therapeutic agents, as these cells present an intrinsic capacity to migrate towards malignant tumors. Nevertheless, it is still controversial whether this innate tropism of MSCs towards the tumor area is associated with cancer promotion or suppression. Considering that one of the major mechanisms by which MSCs interact with and modulate tumor cells is via secreted factors, we studied how the secretome of MSCs modulates critical hallmark features of GBM cells. Methods: The effect of conditioned media (CM) from human umbilical cord perivascular cells (HUCPVCs, a MSC population present in the Wharton's jelly of the umbilical cord) on GBM cell viability, migration, proliferation and sensitivity to temozolomide treatment of U251 and SNB-19 GBM cells was evaluated. The in vivo chicken chorioallantoic membrane (CAM) assay was used to evaluate the effect of HUCPVCs CM on tumor growth and angiogenesis. The secretome of HUCPVCs was characterized by proteomic analyses. Results: We found that both tested GBM cell lines exposed to HUCPVCs CM presented significantly higher cellular viability, proliferation and migration. In contrast, resistance of GBM cells to temozolomide chemotherapy was not significantly affected by HUCPVCs CM. In the in vivo CAM assay, CM from HUCPVCs promoted U251 and SNB-19 tumor cells growth. Proteomic analysis to characterize the secretome of HUCPVCs identified several proteins involved in promotion of cell survival, proliferation and migration, revealing novel putative molecular mediators for the effects observed in GBM cells exposed to HUCPVCs CM. Conclusions: These findings provide novel insights to better understand the interplay between GBM cells and MSCs, raising awareness to potential safety issues regarding the use of MSCs as stem-cell based therapies for GBM.The authors would like to acknowledge the funding agencies that supported this work: Fundacao para a Ciencia e Tecnologia (FCT), Portugal, projects reference: PTDC/SAU-GMG/113795/2009 (BMC); SFRH/BD/88121/2012 (JVdC); SFRH/BD/103075/2014 (EDG); IF/00601/2012 (BMC); IF/00111/2013 (AJS); SFRH/BD/81495/2011 (SIA); PTDC/NEU-NMC/0205/2012, PTDC/NEUSCC/ 7051/2014, PEst-C/SAU/LA0001/2013-2014 and UID/NEU/04539/2013 (BM); Fundacao Calouste Gulbenkian (BMC); Liga Portuguesa Contra o Cancro (BMC); " COMPETE Programa Operacional Factores de Competitividade, QREN, the European Union (FEDER-Fundo Europeu de Desenvolvimento Regional) and by The National Mass Spectrometry Network (RNEM) under the contract REDE/1506/REM/2005; FEDER funds, through the Competitiveness Factors Operational Programme (COMPETE), and by National funds, through the Foundation for Science and Technology (FCT), under the scope of the project POCI-01-0145-FEDER-007038; and project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). The funding body did not have a role in the design of the study, in collection, analysis or interpretation of data, or in writing the manuscript

    Multi Bands Network Performance Assessment for Different System Upgrades

    Get PDF
    We investigate the capacity of a reference German network when employing band-division multiplexing (BDM) using C+L+S-bands and spatial-division multiplexing (SDM) in case of different nodes distribution scenarios. We show that BDM enables increasing the network capacity by up to almost 3 x with respect to C-band transmission only

    Power control strategies and network performance assessment for C+L+S multiband optical transport

    Get PDF
    Spatial-division multiplexing (SDM) and band-division multiplexing (BDM) have emerged as solutions to expand the capacity of existing C-band wavelength-division multiplexing (WDM) optical systems and to deal with increasing traffic demands. An important difference between these two approaches is that BDM solutions enable data transmission over unused spectral bands of already-deployed optical fibers, whereas SDM solutions require the availability of additional fibers to replicate C-band WDM transmission. On the other hand, to properly design a multiband optical line system (OLS), the following fiber propagation effects have been taken into account in the analysis: (i) stimulated Raman scattering (SRS), which induces considerable power transfer among bands; (ii) frequency dependence of fiber parameters such as attenuation, dispersion, and nonlinear coefficients; and (iii) utilization of optical amplifiers with different doping materials, thus leading to different characteristics, e.g., in terms of noise figures. This work follows a two-step approach: First, we aim at maximizing and flattening the quality of transmission (QoT) when adding L-and rm L +rm S-bands to a traditional WDM OLS where only the C-band is deployed. This is achieved by applying a multiband optimized optical power control for BDM upgrades, which consists of setting a pre-tilt and power offset in the line amplifiers, thus achieving a considerable increase in QoT, both in average value and flatness. Second, the SDM approach is used as a benchmark for the BDM approach by assessing network performance on three network topologies with different geographical footprints. We show that, with optical power properly optimized, BDM may enable an increase in network traffic, slightly less than an SDM upgrade but still comparable, without requiring additional fiber cables

    Network Comparison of C+L-band Transparent versus C-band Translucent Upgrade

    Get PDF
    We investigate the designs for the capacity upgrade for transparent C-and C+L-band and translucent C-band only; and evaluate them in terms of capacity, energy consumption, cost, and link utilization ratio. Two different transceiver (TRX) implementations, namely Flex and Fix are used in transparent C-and C+L-band and translucent C-band network designs. We investigate networking performance enabled by different upgrade strategies on a reference topology by relying on an accurate optical transport model. We show that lighting the L-band by keeping a transparent approach leads to an increase in network capacity of more than two times. Conversely, applying translucent design to the C-band to improve the spectral efficiency by deploying regenerators results in only modest improvements of capacity. Also, C+L-band transparent design allows to reduce the number of transceivers per bit/sec and to consume almost 4 dB less energy than that required with the C-band translucent design

    Comparison of Transceiver and C+L Band Upgrades: Network Traffic and Energy Assessment

    Get PDF
    Being as power-efficient as possible is becoming an issue of increasing importance in optical networks due to the continuous increase of requested capacity resulting from the exponential growth of IP traffic. In this work, we investigate the trade-off between network capacity and energy consumption in optical transport networks when considering (i) three coherent transceiver implementations; (ii) two capacity upgrade strategies, and (iii) uniform and nonuniform traffic distributions. We show that, in Deutsche Telekom (DT) reference network, a nonuniform traffic distribution leads to an increase in network capacity of about 100 Tbps with respect to the uniform case. Interestingly, the nonuniform traffic distribution showed that, in the DT reference network, more traffic could be transmitted with less energy consumption than when considering the uniform traffic distribution. Additionally, it is also shown that C+L systems lead to an only negligible increase in energy consumption while attaining comparable network capacity as adding a second optical fiber and using C-band only for the three considered coherent transceiver implementations. Newer transceivers are found to be very power efficient when compared with older ones. This is a consequence of technological advances enabling to increase capacity via using higher-order modulation formats and baud rates. In the case of the ZR implementation, a compromise between lower power consumption and capacity was reached to address shorter links

    Transparent vs Translucent Multi-Band Optical Networking: Capacity and Energy Analyses

    Get PDF
    Multi-band optical fiber transmission is generally proposed for capacity upgrades in optical transport networks. To comprehensively assess the potential of multi-band transmission, key metrics such as the potential capacity increase, energy consumption, and the number of required interfaces must be evaluated for different transmission scenarios. We consider progressive spectral exploitation, starting from the C-band only and up to C+L+S+U-band transmission, for both transparent and translucent solutions that exploit optical signal regeneration. By considering accurate state-of-the-art physical layer models, we derive a networking performance metric that enables the comparison of different solutions in terms of capacity allocation and energy consumption. For a translucent network design, different regenerator placement algorithms are compared, with the aim of minimizing energy consumption. The proposed network-wide numerical analysis shows that, for spectral occupations exceeding the C+L-band, translucent solutions can significantly increase network capacity, while leading to a similar energy consumption per transmitted bit as in the transparent design case, but they require the deployment of additional line interfaces. Significantly, these results provide evidence that the transparent exploitation of an additional transmission band produces a capacity increment that is at least comparable to that of a translucent solution based on already-in-use bands. Since this is attained at the expense of fewer line interfaces, it is a key finding suggesting that extending the number of bands supported is a cost-effective approach to scaling the capacity of existing fiber infrastructures
    • …
    corecore